
RESOURCE ANALYSIS OF COGNITIVE PROCESS FLOW USED
TO ACHIEVE AUTONOMY

LOCKHEED MARTIN

MARCH 2016

FINAL TECHNICAL REPORT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

AFRL-RI-RS-TR-2016-068

 UNITED STATES AIR FORCE  ROME, NY 13441 AIR FORCE MATERIEL COMMAND

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose
other than Government procurement does not in any way obligate the U.S. Government. The fact that
the Government formulated or supplied the drawings, specifications, or other data does not license the
holder or any other person or corporation; or convey any rights or permission to manufacture, use, or
sell any patented invention that may relate to them.

This report was cleared for public release by the 88th ABW, Wright-Patterson AFB Public Affairs Office and is
available to the general public, including foreign nationals. Copies may be obtained from the Defense Technical
Information Center (DTIC) (http://www.dtic.mil).

AFRL-RI-RS-TR-2016-068 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE CHIEF ENGINEER:

 / S / / S /
THOMAS E. RENZ RICHARD MICHALAK
Work Unit Manager Acting Technical Advisor
 Computing & Communications Division
 Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

MARCH 2016
2. REPORT TYPE

FINAL TECHNICAL REPORT
3. DATES COVERED (From - To)

SEP 2014 – SEP 2015
4. TITLE AND SUBTITLE

RESOURCE ANALYSIS OF COGNITIVE PROCESS FLOW USED TO
ACHIEVE AUTONOMY

5a. CONTRACT NUMBER
FA8750-14-C-0278

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
62788F

6. AUTHOR(S)

David Rosenbluth

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER
R1HE

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Lockheed Martin
3 Executive Campus Drive
Cherry Hill, NJ 08002

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/RITB
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)

AFRL/RI
11. SPONSOR/MONITOR’S REPORT NUMBER

AFRL-RI-RS-TR-2016-068
12. DISTRIBUTION AVAILABILITY STATEMENT

Approved for Public Release; Distribution Unlimited. PA# 88ABW-2016-0930
Date Cleared: 2 MAR 2016
13. SUPPLEMENTARY NOTES

14. ABSTRACT
The current challenge of autonomy is to achieve a reasonable scaling between task breadth and system resources. As
processing resources are a limiting factor for autonomous operations in complex environments, the incorporation of new
enabling low power processing technologies into autonomous systems is important to overcoming current limitations and
keeping pace with peer adversaries. With the increasing variety of processing technologies, the number of design
choices for implementing end-to-end cognitive processing flows multiplies and the impact of these design decisions on
efficiency and effectiveness increases. The goal of this paper is to provide insights and guidance to system designers
and program managers, not necessarily familiar with cognitive processing, regarding the resource/performance tradeoffs,
and to provide guidance on the costs and benefits of different approaches to cognitive processing. This paper is
organized into two parts: the first introduces an analytical framework within which the relationships between task
complexity and system complexity can be formulated; in the second part, we introduce and analyze a canonical
architecture called context switching cognitive processing architecture that exploits heterogeneous and run-time
reconfigurable processing hardware to address the conflict between operating range (i.e., breadth), and efficiency
through dynamic specialization of processing capabilities to the current task demands.
15. SUBJECT TERMS
Cognitive function flow, Cognitive function in autonomous robotics, Binding of cognitive functions, Processing resources
for cognitive algorithms, Neuromorphic processing for cognitive functions

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
THOMAS E. RENZ

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
N/A

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

47

i

TABLE OF CONTENTS
Section Description Page

List of Figures ... ii

1.0 Summary ..1

2.0 Introduction ..3

3.0 Methods, Assumptions, and Procedures ..6

3.1 Taxonomy and Metrics for Autonomy ..6

3.1.1 Background. ...7

3.1.2 State-space Formulation of Complexity. ...7

3.1.3 Complexity of Autonomy. ...12

3.2 Resource Analysis of Cognitive Reconfigurable Computing19

3.2.1 Background. ...20

3.2.2 Context Switching Cognitive Processing Architectures.21

3.2.3 Analysis of CSCPA Performance. ...24

4.0 Results and Discussion ..36

5.0 Conclusion ...38

6.0 References ..39

List of Symbols, Abbreviations, and Acronyms ..41

ii

LIST OF FIGURES
Figure Description Page

Figure 1: Illustration of Basic Sense-Decide-Act Loop ...6

Figure 2: Illustration of the Three Primary Dimensions of the Autonomy Levels for Unmanned

Systems Framework ...7

Figure 3: Rube Goldberg Machines Have Low Functional Complexity but High Structural and

Dynamic Complexity ...9

Figure 4: Busy Beaver Turing Machines Have Low Structural and Functional Complexity, but

High Dynamic Complexity ..11

Figure 5: Taxonomy of Complexity for Autonomy ...12

Figure 6: Illustration of the Growth of System Complexity with Task Complexity15

Figure 7: Decomposition of Internal System Complexity into Activation and Configuration

Complexity ...16

Figure 8: Relationship Between Functional or Task Complexity and System (Structural and

Dynamic) Complexity ..17

Figure 9: The Relationships Between Internal and External Complexity in the Context of

Autonomy; Between DoF and Quantization in the Context of Specialization; Between

Specialization and Autonomy ..18

Figure 10: UAV Achieving a Collision Avoidance Decision ..19

Figure 11: Diagram of Functional Components of a Context Switching Processing Architecture22

Figure 12: The Tradeoff between Granularity of the Partitioning into Contexts and Complexity

of the Context Specific Processing ..24

Figure 13: A Drone Flying in Two Separate Contexts, Which in this Case are Environments25

Figure 14: Comparison of Polling and Event Based Sensing Schemes ..26

Figure 15: Example of a Context Switch Timeline ...26

Figure 16: Example of Algorithm Timeline ..27

Figure 17: Breakdown of Polling Scheme ...27

Figure 18: Breakdown of Context Switching Element of the System ...29

Table 1: General Information for COTS Processors Used in Evaluation of Respective Power

Consumption ..32

Table 2: Estimated power values for each processor type ...33

iii

Table 3: Estimates of the Power Required to Program the Processor to Run Algorithms33

Table 4: Estimated Costs of the Different Portions of Context Switching34

Table 5: Estimates of Power to Run the Algorithm Constantly Given 500k Operations are

Necessary ...34

Table 6: Estimated Values of the Cost to Run the Whole Analysis ..34

Table 7: Components of Complexity Assessments to be Performed During System Design36

Approved for Public Release; Distribution Unlimited.
1

1.0 SUMMARY

Unmanned Air Vehicle, (UAV) Autonomy constitutes a specialized domain of processing
problems that demand computational architectures optimized to its needs. The unique combina-
tion of processing requirements stemming from the nature of the platform, the tasks to be per-
formed, and the nature of the environment in which the systems operate requires the design of
efficient and effective real-time cognitive processing architectures that can rapidly adapt to the
demands of unpredictably changing tasks/environments. As processing resources are a limiting
factor for autonomous operations in complex environments, the incorporation of new enabling
low Size, Weight and Power, and Cost, (SWAP-C) processing technologies into autonomous
systems is important to overcoming current limitations and keeping pace with peer adversaries.
But with the increasing variety of processing technologies, the number of design choices for im-
plementing end-to-end cognitive processing flows multiplies and the impact of these design deci-
sions on efficiency and effectiveness increases. The goal of this paper is to provide insights and
guidance to system designers and program managers, not necessarily familiar with cognitive
processing, regarding the resource/performance tradeoffs, and to provide guidance on the costs
and benefits of different approaches to cognitive processing.

Understanding the potential value of cognitive processing requires evaluating overall system
costs and benefits of behavioral complexity. Typical analyses characterize computational costs of
component functions independent of the end-to-end autonomous behaviors to which they con-
tribute and the environments in which they operate. This type of analysis obscures key contribu-
tions that behavioral complexity can make to overall system efficiency and performance (e.g.,
energy consumption of executing complex trajectory planning algorithms needs to be weighed
against the energetic gains of avoiding energetically expensive paths). It is important for design-
ers to understand the impact of behavioral complexity beyond its computational costs and event
to consider behavioral approaches to managing resource consumption and optimization. This pa-
per is organized into two parts: the first part introduces an analytical framework within which the
relationships between task complexity and system complexity can be formulated; in the second
part, we introduce and analyze a canonical architecture called context switching cognitive pro-
cessing architecture (CSCPA), that exploits heterogeneous and run-time reconfigurable pro-
cessing hardware to addressing some of the key features and constraints of processing for
autonomy.

We begin by introducing a framework for decomposing and characterizing both system and
task complexity using a state space formalism. This formalism allows us to formulate complexity
of the environment (i.e., physical systems) and complexity of the autonomous system (i.e., com-
putational systems) within the same framework. The generality of the state-space formalism is
equally important in our context in order to be able to analyze a wide variety of different compu-
tational models including both discrete and continuous systems, and asynchronous and synchro-
nous system. Within the state space formalism we describe three distinct dimensions of
complexity, Structure; Function; and Dynamics. Within this framework we relate task complexi-
ty to system complexity, and provide a framework for describing the different aspects of com-
plexity of each and tradeoffs between them. In general, system complexity must be designed to
match the requirements of task complexity, but there are a variety of different ways in which
complexity can be distributed during system design. Of particular importance are the tradeoffs
between specialization, configurability, efficiency, and autonomy. Mismatches between architec-
tural optimizations and specific function/application characteristics result in inefficiencies. In

Approved for Public Release; Distribution Unlimited.
2

many application domains, specialization is a common design strategy in which behavioral
breadth is traded for either greater efficiency (by exploiting structure of a simpler domain) or for
higher performance (depth of processing in a particular domain). However, in autonomy, there is
a tension between two key metrics for autonomy, efficiency and operating range. The current
challenge of autonomy is to achieve a reasonable scaling between task breadth and system re-
sources.

The conflict between operating range (i.e., breadth), efficiency, and performance can be ad-
dressed through dynamic specialization of processing capabilities to the current task demands to
increase both autonomous performance and computational efficiency. This approach is enabled
by run-time reconfiguration (RTR) architectures that allow hardware to change organization dur-
ing the computation to tailor end-to-end processing chains as needed during different phases of
the computation/behavior/task. Specialization of processing provides improvements in both the
efficiency and performance of processing, over processing that is statically optimized to the
global operational context. Context Switching Cognitive Processing Architectures are introduced
as a canonical RTR architecture suited to autonomy applications. The core computational princi-
ple motivating context switched processing is the decomposition of complex task domains into
piecewise simple domains, called contexts, enabling the use of lower complexity/specialized al-
gorithms to achieve the task objectives within each domain. When operating in dynamic and un-
predictable real-world scenarios, context sensitive run-time reconfiguration can temporally
multiplex limited hardware resources. The potential benefit of run-time reconfiguration is the
specialization of the context specific computation to the near-instantaneous needs of the task,
reducing resources (e.g., the size and energy) required/consumed. These benefits of improved
context specific processing performance/efficiency must be weighed against the costs of context
monitoring and context switching (e.g., the additional space required to hold extra configuration
information and the time and energy needed to reconfigure). One of the advantages offered by
CSCPA is the ability to parallelize the Context Monitoring and the Context Specific Processing
components. Our analysis supports the case for using heterogeneous reconfigurable processing
hardware in implementing CSCPA when the number/complexity of contexts is sufficiently large,
and the frequency of context changes is sufficiently low. We specifically considered the use of
event based processing (e.g., TrueNorth) for context monitoring because of the low power need-
ed for continuous monitoring of sparsely occurring complex events. The low precision, probabil-
istic, and approximate nature of event based processing techniques is well matched to the nature
of contexts in the environment, which do not have precisely definable boundaries or features.

Approved for Public Release; Distribution Unlimited.
3

2.0 INTRODUCTION

In this paper we present a processing resource analysis for embedded systems that consist of
heterogeneous processors. Different processing hardware architectures (General Purpose Proces-
sor, GPP, Graphical Processing Unit, GPU, Neuromorphic, Field Programmable Gate Array,
FPGA, and Application Specific Integrated Circuit, ASIC) are efficient for performing different
computational tasks. The overall performance of such a heterogeneous embedded system will
depend upon the allocation of computational tasks to computational resources. The domain of
interest in this paper is UAV autonomy which has a unique combination of processing require-
ments stemming from the nature of the platform, the tasks to be performed, and the nature of the
environment in which the systems operate. The following attributes, in combination, shape the
unique the requirements and constraints of processing for autonomy:
1. Nature of the Task/System:
a. Closed Loop Control: all autonomous behaviors inherently consist of closed loop interac-

tions between the platform and the environment. The environment provides inputs to the plat-
form sensors and the platform responds to inputs by acting upon the environment through
actuators. The function of processing in autonomy is to optimally map sensor inputs to actua-
tor outputs. The fundamental organizational structure of processing for autonomy consists of
the control loop, consisting of elaborations of the basic sense-decide-act chain that is closed
through the environment.

b. Real-Time Control: Typically there is a limited amount of time in which the autonomous
system must respond to events in the environment. Most of the control tasks performed in au-
tonomy therefore have latency requirements. These can often be very demanding (e.g., obsta-
cle avoidance during high speed flight in cluttered environments), and optimization of end-
to-end processing latency is often a key performance objective. Real-time, (RT) stream pro-
cessing provides an appropriate algorithmic framework for the formulation of RT end-to-end
processing chains for control.

c. Performance criteria: In many application domains, the primary objective of computation is
to find exact or optimal solutions to a computational problem, while the minimization of
computational resources is a secondary concern. In autonomy, whole system resource mini-
mization (which includes computational resources) is often an equal or more important con-
cern, and adequate solutions to computational problems that can be generated quickly and
cheaply are often preferable to exact or near optimal solutions.

d. Operating Range: In many computational domains, the input and output spaces and the ob-
jectives of the computation are narrowly defined and known a priori, which leads to solutions
that are deep (highly optimized for the specific domain) but not broad. One of the fundamen-
tal objectives of autonomy is breadth - the ability to operate in as wide a variety of environ-
ments as possible, and to execute as wide a variety of missions (objectives) as possible.

e. SWAP-C: The size, weight, power, and cost constraints on the autonomous system are typi-
cally considerably stricter than in other domains. These considerations not only affect the
performance criteria as discussed above, but also limit the sensing, processing, and actuation
capabilities of the system. These limitations affect the type, bandwidth, resolution, and quali-
ty of measurements of the environment, and affect the bandwidth, precision, and effective-
ness of actions on the environment.

Approved for Public Release; Distribution Unlimited.
4

2. Nature of the Environment:
a. Non-Stationarity: Many of the algorithms designed today depend upon assumptions about

the statistical stationary of the environment (e.g., linear time invariant systems) that allow the
use of standard statistical estimation methods. Unless one artificially constrains the operating
environment within narrow ranges, typical environments are highly non-stationary and fre-
quently discontinuous. This strongly influences the nature of inputs to autonomous systems
and the dynamic responses of the environment to system outputs.

b. Information Sparseness: the vast majority of sensor data is either predictable (due to the
highly predictable nature of the environment) or irrelevant to the task being performed. The
main occupation of processing in autonomy is the detection of and response to the sparse set
of unpredictable and relevant events. Data may be unpredictable for several different reasons:
truly stochastic behavior of the environment that cannot be predicted; insufficient sensing
which does not provide enough resolution/accuracy/range of the variables needed for predic-
tion; hidden or unobservable variables that influence the behavior of the environment; insuf-
ficient complexity in prediction models/or limited predictive processing resources that do not
provide the needed accuracy/complexity to model the environmental phenomena of interest.
Computational, architectural, and algorithmic concerns, approaches, and solutions that con-

form to this unique collection of task, system, and environmental constraints and characteristics
should therefore be considered to constitute a distinct sub-class of embedded computation, pro-
cessing for autonomy, on a par with other classes of computation like cloud computing.

UAV autonomy requires the design of efficient and effective real-time cognitive processing
flows. The use of a variety of specialized processing technologies provides unique advantages in
addressing both the strict SWAP constraints on UAV processing and the demanding processing
requirements of autonomous behavior in complex and rapidly changing environments. For ex-
ample, event-based sensing and computation is an efficient alternative to traditional solutions,
but it is not clear exactly for what platforms, tasks, and environments. As processing resources
are a limiting factor for autonomous operations in complex environments, the incorporation of
new enabling processing technologies into autonomous systems is important to overcoming cur-
rent limitations and keeping pace with peer adversaries. But with the increasing variety of low
SWAP-C processing technologies, the number of design choices for implementing end-to-end
cognitive processing flows multiplies and the impact of these design decisions on efficiency and
effectiveness increases [1]. The leading cause of delay between innovation and deployment in
this arena is the combination of rapid evolution of new processing technologies, and the lack of
tools to evaluate the resource and performance impacts of alternative end-to-end system design
choices. In current design practice, performance/resource consumption assessment is limited to
analysis and experimentation on specific implementations of individual component functions be-
ing executed on homogeneous processing hardware. Design of optimized system level autonomy
requires the performance assessment of entire end-to-end flows, driven by and interacting with
operationally realistic environments while executing on real heterogeneous processing platforms.
Tools for evaluating the performance/efficiency of heterogeneous cognitive processing flows are
becoming increasingly important for accelerating the transition of new processing technologies
into autonomous systems. While resource requirements and performance of end-to-end autono-
mous systems have been evaluated for isolated system functions, integrated end-to-end cognitive
processing flows have not received the same treatment. End-to-end cognitive systems require
their own unique performance and resource metrics and analysis methods that differ significantly
from those of their individual functional constituents. If clear metrics and methods existed for

Approved for Public Release; Distribution Unlimited.
5

assessing costs and benefits of different end-to-end cognitive systems and alternative computing
technologies, then system design and acquisition personnel could make systematic analyses and
quantitative comparisons of alternative technologies leading to more informed decisions. The
goal of this paper is to provide a reference document to be used as a decision-making aid to
guide system designers and program managers not necessarily familiar with cognitive pro-
cessing, or resource/performance tradeoffs of different approaches to cognitive processing, to
provide guidance on the costs and benefits of different approaches to cognitive processing, pay-
ing particular attention to issues related to integration of cognitive process flows within both leg-
acy and emerging UAVs and weapons systems. In the following we will address two topics: 1.
Metrics appropriate for the design and analysis of end-to-end processing systems for autonomy.
2. The resource analysis of a particular canonical form for autonomous system processing.

Approved for Public Release; Distribution Unlimited.
6

3.0 METHODS, ASSUMPTIONS, AND PROCEDURES

3.1 Taxonomy and Metrics for Autonomy

 One of the most challenging aspects of performing a quantitative comparison between end-
to-end cognitive systems is their variety. In their most basic/abstracted form, end-to-end cogni-
tive flows integrate sensor processing, decision making, and motor output, into a sensori-motor
information processing loop that is closed through the environment which is both sensed and act-
ed upon (Figure 1). The basic Sense-Decide-Act
loop constitutes the basic structural construct of
processing for autonomy. [2]

However, both in evolved and engineered sys-
tems, the elaboration of this basic pattern, and in
particular the expansion of the intermediate pro-
cessing between sensory input and motor output,
has been associated with an increase in cognitive
capability and behavioral flexibility. These sys-
tems can span a large range of complexity, capa-
bilities, and operating ranges [3, 4]. In this section
we will address metrics enabling analysis of a
wide variety of full cognitive process flows.

No single factor has a more ubiquitous effect
on both performance and SWAP-C than system
complexity. Additional complexity can always be
exploited to achieve better task performance but
there are complicated factors that affect the cost-benefit tradeoff of adding additional complexi-
ty. For example, evaluation of the value of current computations is complicated by their influ-
ence on future benefits/rewards, indicating the need for an amortized analysis (i.e., an analysis
that takes into account not only instantaneous performance but also long term performance). A
canonical example is the use of pro-active computation, in contrast with reactive computation.
Reactive processing is always necessary in autonomous systems to cope with unexpected events
in the environment. Pro-active processing, while adding complexity and not being strictly neces-
sary, can however lead to significant performance improvements that can outweigh significant
processing costs by predicting and preventing computationally or energetically expensive cir-
cumstances from arising (e.g., it is much more costly to perform an emergency maneuver to
avoid a collision, than to predict it and avoid it long in advance).

It is therefore important to account for system complexity in analyzing cost/performance
trends. Analysis of other factors influencing cost and performance will require that system com-
plexity be factored out before making comparisons. In the following we will present a taxonomic
breakdown of autonomous system complexity, both its descriptive components (which should be
used to characterize the complexity and limitations of autonomous systems), and its prescriptive
components (which should be used during design to determine the required system complexity).
Taxonomies and metrics go hand in hand; the criteria used for splitting systems into groups must
be based upon some form of metric. Therefore we will present an integrated discussion of taxon-
omies and metrics rather than discussing them separately.

Figure 1: Illustration of Basic Sense-Decide-
Act Loop

Approved for Public Release; Distribution Unlimited.
7

3.1.1 Background.
AUTONOMY LEVELS FOR UNMANNED SYSTEMS (ALFUS) is the best known and

most well established unmanned system (UMS) taxonomy [5]. It was a product of a cross-
government ad hoc working group started in 2003 under the direction of the National Institute of
Standards and Technology (NIST), Department of Homeland Security (DHS), and Army Re-
search Laboratory (ARL), and published its results in 2008. Its goal was to develop a framework
for characterization of autonomy for unmanned systems that provided standard terms and defini-
tions for requirements analysis and specification, and metrics, processes, and tools for evaluation
and measurement. The ALFUS metrics characterize autonomous systems along three dimen-
sions: Mission complexity; environmental complexity; and human independence. These are a
good set of metrics for characterizing key factors that are specified by external functional system
requirements at the beginning of the system design process. However, these dimensions do not
address the solution space.

Figure 2: Illustration of the Three Primary Dimensions of the
Autonomy Levels for Unmanned Systems Framework

While the ALFUS framework was a seminal study and many of the distinctions developed in
that study are adopted here, this framework does not provide a means for characterizing internal
system complexity needed in the design and comparison of alternative cognitive processing ar-
chitectures, and the framework does not provide clear insights into the design tradeoffs between
the different metrics. In the current work, we alter the ALFUS framework, combining some
categories and splitting others to provide a framework useful from the prescriptive/engineering
standpoint. The framework developed here captures key engineering decision points and re-
quirements and dependencies between engineering decisions from top down perspective.
3.1.2 State-space Formulation of Complexity.

 The complexity of systems, whether natural or man-made, can best be formalized using the
concept of the system state space (also called phase space). The state space of a system is the

Approved for Public Release; Distribution Unlimited.
8

space of possible configurations that the system can assume. For example, in statistical mechan-
ics, the state of a gas is determined by the positions and velocities of all the particles in the gas.
In a digital computer, the state would be the binary state of all the binary devices in the comput-
er. However, in practice such fine grained analysis is not possible, and one must instead evaluate
coarser macro-states of these systems. We will return to the topic of characterizing the complexi-
ty of the state space in the section on context switching systems. The generality of the state-
space formalism is important in our context in order to be able to analyze a wide variety of dif-
ferent computational models including both discrete and continuous systems, and asynchro-
nous and synchronous system. It also allows us to formulate complexity of the environment
(i.e., physical systems) and complexity of the autonomous system (i.e., computational sys-
tems) within the same framework. It is conceptually useful to think of resource consumption as
a measure of the resources needed to maintain states and to make state transitions, and to formu-
late processing latency in terms of the length of trajectories in state space.

Each of the system complexity measures we will be discussing (environmental, mission, sys-
tem complexity) can be described along three distinct dimensions: Structure; Function; and
Dynamics. Each can be conveniently formulated within the state space framework. All three
types of characterization are useful for a full description of system complexity, but this triplet
constitutes an over-complete description. Any two measures in the triplet will largely determine
the third. For example, knowing the structure of the processing system and the dynamics of the
execution of the processing determines the functional input-output relationship. In computational
system design there is often a tradeoff between complexity in one of these dimensions and com-
plexity in the others.
3.1.2.1 Structural Complexity.

Structural complexity captures the static/kinematic aspects of the system that define and con-
strain the possible states of the system and hence determine the complexity of the state space it-
self. Structural system characteristics correspond either to static aspects of the system that are
fixed at design time, or to infrequently or slowly changing (in comparison with the timescales of
the run time computations) characteristics of the system. It is largely determined by capabilities
of fixed hardware, but can also include the constraints imposed by software, if the software is
fixed (e.g., many FPGA implementations).

The structural complexity reflected in the state space is determined by the:
• Dimensionality or number of degrees of freedom (DoF) in the state space; Dimensionali-

ty and DoF can differ when the actual state space is constrained and consists of a sub-
space embedded in a space of higher dimensionality (e.g., strange attractors).

• Geometry and Topology of the state-space, defining neighborhoods of states, nearness
of states, and distance metrics between states. State spaces with complex geometry and
topology can be constructed with complex state transition functions where distance is de-
fined in terms of number of transitions from one state to another. The structural complex-
ity of an ASIC is captured in both the complex geometry/topology of its state-space and
of the state-transition function which is determined by the particularities of the structure
of a specific application.

• Quantization of the state-space, which includes both the dynamic range and the resolu-
tion of each of the dimensions of state space. Quantization need not be uniform, and may
be specialized for the environment or task.

One can intuitively think of these factors as determining the number of unique states that
can be distinguished. The state space is partitioned up into N dimensional volumes (cubes in the

Approved for Public Release; Distribution Unlimited.
9

simplest case) and each distinct state is represented by a unique volume. The number of elements
in the state space is often a key parameter in determining the computational complexity of algo-
rithms. A critical task in the design of autonomous systems is specification of the state spaces for
the environment, the mission, and the system, their dimensions, metrics, and quantizations.
SWAP-C

• Cost: Structural complexity is the dominant contributor to fixed/sunk costs in hardware
determined at design time. Since structural complexity cannot be altered easily after the
system is constructed, it is common for designers to engineer in excess structural com-
plexity to create capacity to accommodate unanticipated future processing demands. It
has been hypothesized that in biological systems, structural complexity comes at a low
cost [6].

• Power: The idle power consumption is determined by structural complexity. Each active
stateful device requires power to maintain state and be ready to respond. Another im-
portant contributor to power requirements is communication network needed for interac-
tions between devices.

• Size/Weight: Greater structural complexity implies more devices which leads to larger
and heavier systems. The scaling of auxiliary systems such as power supplies may domi-
nate the scaling of size and weight as structural complexity increases.

3.1.2.1 Functional Complexity.
Functional complexity describes the complexity of the input-output mapping or the objective

function being optimized, without reference to the implementation of the mapping. This is only
relevant to systems in which there are subspaces of the state space identified as input dimensions
(e.g., sensor state variables) and output dimensions (e.g., actuator state variables). Functional
complexity captures the complexity of externally observable mapping performed by the system,
which can be assessed based upon a black-box analysis. Characteristics of mappings such as
number of input/outputs, number of dependencies between inputs/outputs, non-linearity, non-
convexity, discontinuity, and asymmetry contribute to their complexity. Figure 3 shows a sys-
tem with low functional complexity.

Figure 3: Rube Goldberg Machines Have Low Functional Complexity
but High Structural and Dynamic Complexity

Approved for Public Release; Distribution Unlimited.
10

For engineered/designed systems, the input-output mapping is specified by functional re-
quirements of the task to be performed. The input-output mapping can be described either:

• Explicitly with an exhaustive, exemplar based, or sample based set of input-output pairs,
or with equations; or

• Implicitly with an objective function or reward function and constraints whose optimal
solution is the desired mapping

In autonomous systems, it is most common to specify functional requirements implicitly as
an optimization problem.

The concept of function can also be applied to natural/non-engineered systems (e.g., the envi-
ronment) in a well-defined way by considering the governing equations of the system as their
input-output function. The governing equations provide a mapping from current observable state
of the system to next states. For example the behavior of many physical systems can be derived
from the optimization of an objective function (energy function/Hamiltonian). This mapping may
depend upon unobservable variables.

The Vapnik-Chervonenkis (VC) dimension offers a possible computational complexity
measure with which to quantify Functional complexity. This is a measure of the ability of the
functional map to distinguish and respond to different situations differently. It is a measure of
behavioral flexibility.
SWAP-C:

Since functional complexity is by definition independent of implementation, it is difficult to
establish anything but theoretical lower bounds on the processing complexity and SWAP. It does
however have a profound effect on the overall SWAP of the autonomous system (i.e., the
plant). For example, the energy consumption of navigating to a target will depend critically on
the navigation behavior executed, and whether the platform can intelligently anticipate and avoid
time and energy consuming situations. The behaviors executed by the autonomous system are
determined by the input-output mapping. If we are discussing a control system (as all autono-
mous systems essentially are), the input-output map constitutes the control law. One can evaluate
and compare different control laws using metrics such as energetic efficiency, robustness, speed
of convergence, etc. These are key behavioral performance measures for the system as a whole,
rather than just for processing. Increasing functional complexity, while it may incur a computa-
tional cost, may be critical for reducing overall system SWAP. The greater functional complexity
achievable by a larger platform (due to its ability to incorporate more processing resources) may
provide behavioral energetic advantages that offset the larger processing SWAP-C. Conversely,
in order for a larger SWAP platform to be operationally useful / feasible, it may be necessary to
give it greater functional complexity and hence processing SWAP-C in order to offset its overall
SWAP-C.
3.1.2.1 Dynamical Complexity.

Dynamic/Behavioral complexity describes the complexity of state space trajectories as the
system evolves in time. The system dynamics are specified by: a state transition function that
explicitly describes the mapping of the state at one instant to the state at the next instant (e.g., a
program); differential or difference equations (e.g., a dynamical system); or by the implicit opti-
mization of an objective function (e.g., minimization of an energy function or other trajectory
characteristics such as curvature or length). Figure 4 shows a system with high dynamical com-
plexity.

Approved for Public Release; Distribution Unlimited.
11

In the resource analysis of end-to-end system cognitive processing, measures of interest are
defined on end-to-end state trajectories. There are many ways to characterize the complexity of
state space trajectories. For systems in which there are distinguished input and output subspaces,
the trajectories of interest are typically those corresponding to the propagation of information
from input (changes in state of input subspace) to output (changes in output subspace). One sim-
ple measure is the length of the trajectory, which is a measure of the latency of the end-to-end
computation. The calculation of the energy consumed during end-to-end computations can be
partitioned into energy consumed in maintaining state and energy consumed in state transitions.
The total transition energy consumed in an end-to-end computation is the path integral of the
state-transition energy function. In physical systems, the complexity of state space trajectories
can be descriptively characterized by the rate at which new information is generated. For simple
deterministic phenomena, the trajectory complexity is low due to the predictability of the next
state. Information generation rate is an important measure of the complexity of dynamics. As
discussed in greater detail in the section on reconfigurable computing, temporal multiplexing of
hardware leads to more complex computational dynamics in both system activation and configu-
ration state-spaces.

Figure 4: Busy Beaver Turing Machines Have Low Structural and
Functional Complexity, but High Dynamic Complexity

The following examples illustrate the mapping from common computational concepts to
characterizations of computational dynamics:

• Parallelism in processing is reflected in the state-space trajectories that move in multiple
state-space dimensions simultaneously.

• In synchronous processing the trajectories progress in regular discrete time steps, while in
asynchronous processing, the trajectories can progress in continuous time or irregular
discrete steps.

Approved for Public Release; Distribution Unlimited.
12

SWAP-C:
Each active change in state of a processing system consumes time and energy. In general,

larger changes in state will consume more time and energy. Motion of the state in different di-
mensions of the state space will incur different energy and time costs. In particular it is important
to note that in processing systems, there can be significant dynamics in both the activation state
space (corresponding to the execution of “within context” computations) and in the configuration
state space (corresponding to context switching). The costs associated with state transitions dur-
ing program execution will be significantly different from the costs of system reconfiguration
that occurs during context switching.
3.1.3 Complexity of Autonomy.

There are dual aspects of the complexity of autonomous systems: one aspect captures the task
complexity and determines the requirements imposed upon the designed system, constituting the
independent variables over which the designer has no control (although see below under mission
complexity for caveats); the dual aspect is the system complexity, which includes many aspects
of the system other than processing (although we will be focusing only on sensing, processing,
and actuation system components), and is the result of engineering design decisions. Figure 5
shows that system complexity must be commensurate with task complexity. Growth of system
complexity with respect to task complexity (right) is the main challenge of autonomy.

Figure 5: Taxonomy of Complexity for Autonomy

3.1.3.1 Task Complexity.
Task complexity and performance requirements place a lower bound on the complexity of

the autonomous system that can execute the task at the desired level of performance. Task com-
plexity combines two of the dimensions in the ALFUS framework: Environmental complexity;
and Mission complexity. While these are typically beyond the control of the system designer and
come in the form of system requirements, there is an important feedback from the designer dur-
ing system design, in which the designer alters the design requirements by specifying system op-
erating constraints. These specify both limitations on the environment complexity (e.g., cannot
fly in winds stronger than x) and on the mission complexity (e.g., can only track up to x simulta-
neous targets).

Approved for Public Release; Distribution Unlimited.
13

Environmental Complexity
The environment or range of environments in which the autonomous system must operate

will have a significant impact on the computational burden on the system and is an important
factor in determining the requisite system complexity. For example, the processing load associat-
ed with navigating in a sparse environment differs significantly from the processing load associ-
ated with navigating in a heavily cluttered environment. As discussed in the introduction, two
characteristics of the environment that have a significant impact on the processing load are: sta-
tionarity/non-stationarity; and predictability/stochasticity/information generation rate/rate of in-
novation.

• State Space Structure: The state of the environment can be described at many different
levels of granularity. In practice, the appropriate level of description is largely determined
by the mission requirements and by the behavioral resolution of the system. The finest
scale at which the system can sense and act upon the environment sets a lower limit on
the relevant resolution of the environment state space. The dimensions of the environ-
ment state-space are not typically the same as for the sensor state space. For example, for
a navigation task, the relevant environmental state space could be the 3D positions and
motions of all the objects in the environment, but the sensors may not be able to detect
these features directly. The maximum precision with which positions and velocities in the
environment can be inferred will be determined by the sensors. The dimensions of the
environmental state space need not correspond to physical dimensions, nor do they need
to be tied to an absolute coordinate system. They can be conceptual (e.g., object catego-
ries) and relational dimensions (e.g., relative speed). Relevant environmental states can
include unobservable/hidden variables such as the internal states of other systems in the
environment (e.g., internal state of an evasive target) that can affect their observable be-
havior.

• State Space Function: The governing equations of the dynamics of the environment can
be expressed in a variety of different forms. The trajectory of a thrown ball is governed
by Newton’s laws but also can be expressed as the minimization of an objective function
(Hamiltonian formulation). In the case of animate objects in the environment (e.g., other
aircraft, people, machines) their behavior can also be described by governing equations
that can often be expressed as the optimization of an objective function that captures in-
tent or purpose. It is important to note that governing equations can vary with respect to
the state of the environment, and it is not uncommon to have large abrupt changes in the
governing equations. This gives rise to situations in which different regions of the envi-
ronmental state space exhibit very different dynamics (non-ergodic/non-stationary behav-
ior).

• State Space Dynamics: The dynamics of the environment is a product of both the state of
the environment and the governing equations (structure and function). Dynamics can be
described either implicitly as the solution of the equations of motion or state transition
function, or explicitly as a trajectory in state space. Even if the current state is known
with certainty, the trajectory can be stochastic due to the stochasticity of the equations of
motion/transition function. The complexity of the dynamics of the environment deter-
mines how predictable the environment is, which in turn has a significant impact on pro-
cessing load.

Approved for Public Release; Distribution Unlimited.
14

Mission Complexity
• State Space Structure: Mission state consists of the state of autonomous system with re-

spect to state of the environment, both points being in the state space of the environment
(e.g., if the mission is to navigate to a target, the current state is the position and heading
of the UAV relative to the target). The description of the autonomous system state does
not include any internal system state variables that are not part of the environment state
space.

• State Space Function: Mission objectives can be expressed in a number of ways: by de-
fining a set of goal states (environment state, autonomous system state) pairs; or by defin-
ing an objective function on the set of all pairs that is to be optimized.

• State Space Dynamics: Mission dynamics are the product of both the dynamics of the
environment and the dynamics of the autonomous system. Mission objectives can change
as a function of both of these states. Changes to mission objectives can have a significant
impact on both processing and overall system resource demands.

3.1.3.2 System Complexity.
Usually the designer tries to find the simplest system architecture that will satisfy the task re-

quirements. SWAP-C is proportional to complexity since more complex systems usually consist
of more components, more complex components, and more expensive components. There are
however interesting tradeoffs that can be made between the complexity of the non-processing
system components and the processing components in which: one can make do with less com-
plex non-processing components by increasing behavioral/processing complexity (e.g., can
maintain temperature either with an internal temperature control system, or behaviorally - by go-
ing into the sun when it is cold); likewise, one can make do with simpler processing if more
complex non-processing elements are used (e.g., elastic properties of materials can be exploited
to passively conserve energy).

In order to account for systems that are semi-autonomous and/or are part of a larger distribut-
ed system, we broadly divide system complexity into internal system complexity, and external
system complexity. This distinction is important, as many systems shift complexity from internal
systems to external systems as a means for lowering the SWAP-C in exchange for sacrificing full
autonomy. It has been proposed that a measure of autonomy is the ratio of the algorithmic com-
plexity of the internal system and the communication complexity between the internal system
and external systems [7]. Figure 6 illustrates both the notional tradeoff between internal and ex-
ternal system complexity with respect to autonomy, and the splitting of task complexity between
internal system complexity and external system complexity. The split determines the degree of
autonomy of the system.

While the ALFUS framework specifically refers to human independence as a dimension for
characterizing autonomous systems, we use a more general framework in which external systems
can be either human or machine. External systems such as larger platforms, ground stations,
networks/clouds, supercomputers, or humans can provide a resource constrained system with
additional resources as long as the systems have sufficient bandwidth to communicate the needed
information. While communication with external systems is desirable in that it can provide use-
ful information/resources that are not available locally, the dependence on external systems in-
troduces an undesirable vulnerability that can be exploited by adversaries, (e.g., denial of
communications or manipulation).

Approved for Public Release; Distribution Unlimited.
15

Figure 6: Illustration of the Growth of System Complexity with Task Complexity

System designs with adjustable autonomy should be considered a compromise that permits
resource savings by depending on external systems when communications are available and can
move toward progressively greater autonomy as communications degrade. The price for this
compromise is that such systems must be designed to include enough “margin” to ensure that
processing resources are available when increased autonomy is required. This has the side effect
of requiring more SWAP-C to accommodate the additional processing resources, which will
consume additional power, fuel, etc. even when the additional processing resources are idle.
Internal System Complexity

In processing systems it is convenient to distinguish two different types of system state, con-
figuration state and activation state, and to factorize the state-space into the product of the con-
figuration state-space and the activation state-space.

• Configuration state corresponds to the values of all the adjustable settings of the system
that determine the system operation (e.g., programs). Configuration changes include load-
ing new programs, such as during reflashing of an FPGA/neuromorphic processor, or
context switching in a GPP. Configuration state is particularly important when we con-
sider learning and adaptation. Configuration parameters include slowly changing global
mode parameters such as energy saving modes and clock speeds, to operating system pa-
rameters governing things like memory allocations and priorities, to very fast changing
context switching and configuration of control logic during program execution.

• Activation state corresponds to the dynamic state of the system that changes as data is be-
ing processed. In digital computation, the activation state includes values of variables in
memory, stacks, caches, registers etc. In neuromorphic processing, the activation state in-
cludes the activation values of each of the neurons, synapses, etc. A program execution
can be viewed as a trajectory in activation state-space.

Figure 7 shows the decomposition of internal system complexity into activation and configu-
ration complexity. These are primarily distinguished by timescale, but are conventionally asso-
ciated with data and control/instruction processing. The complexity of any state space can be
decomposed into structural, functional, and dynamical complexity. Structural complexity is de-
termined by degrees of freedom, quantization resolution, and geometry and topology of the state
space. In formal terms, the main distinction between these is in the timescales on which they
change (slow and fast respectively – more generally one should consider a spectrum of time-

Approved for Public Release; Distribution Unlimited.
16

scales). Informally, the distinction is between control/instruction and data. Computational archi-
tectures often include separate communications paths for data and for control signals for recon-
figuration. The independent consideration of these two subspaces is only valid when the behavior
in configuration space is independent of the behavior in activation space. In general this will not
hold. In neural systems an important component of the activation state is the membrane voltage
of neurons, whereas an important component of the configuration state would be the strengths of
synaptic connections between neurons.

Figure 7: Decomposition of Internal System Complexity into Activation and Configuration
Complexity

It is common in processing system design to trade off structural complexity and dynamical
complexity to implement a given function (simple system doing more work vs. complex system
doing less work) [8]. A comparison of complex instruction set computing (CISC) architectures
that build complex instructions directly into the hardware and reduced instruction set computing
(RISC) architectures that can accomplish the same things using simpler hardware but at the cost
of more/complex activity serves as a well-known example of this tradeoff [9]. By constructing an
activation state space in which relevant states are close or well organized, one can simplify dy-
namics. The distinction between software and hardware reflects the differences between dynam-
ics and structure. For example, one can implement the same algorithm on an ASIC or in a GPP.
The ASIC has high structural complexity (e.g., many irregularities/asymmetries in the circuit de-
sign leading to complex state space geometry and topology) and low dynamical complexity (e.g.,
no dynamics in the activation state space associated with program execution; no configuration
state space dynamics). The central processing unit (CPU) implementation has low structural
complexity (e.g., simpler state space geometry and topology), and high dynamical complexity
(e.g., complex dynamics due to program execution). To be scalable, processing hardware design
depends a great deal on structural regularity/symmetry. This gives rise to regularity/symmetry in
the geometry and topology of the state space. These regularities give rise to low complexity ac-
cording to the definition of algorithmic complexity. As task complexity (ie. functional complexi-
ty) increases the system complexity must also increase, but there is a design choice to be made
about how one splits that additional complexity between structural and dynamic (Figure 8).

Approved for Public Release; Distribution Unlimited.
17

Figure 8: Relationship Between Functional or Task Complexity and System (Structural
and Dynamic) Complexity

As part of the design tradeoff between structure and dynamics important design decisions
must be made regarding the allocation of complexity to the activation state space and to the
complexity of the configuration state space. This is also a tradeoff in which, greater complexity
in the configuration state space/dynamics can result in simplification of the activation state
space/dynamics,([see discussion of context dependent processing).

Supporting dynamic reconfiguration has costs and benefits. Creating complex activation state
spaces without configurability imposes a large design time cost [8]. Creating complex activation
state spaces with configurability imposes a run time cost. Comparing an ASIC, an FPGA, and a
GPP illustrates this point. An ASIC has few degrees of freedom in its configuration space – its
configuration is fixed at design time to support a particular application – but has complex (appli-
cation specific) activation state-space geometry/topology and dynamics; an FPGA has many de-
grees of freedom in its configuration space but it is costly (in time and energy) to reconfigure and
the structure of the activation state space is less complex; a GPP has a relatively few degrees of
freedom in configuration space, but highly complex configuration space dynamics (which results
in time and energy costs).

• State Space Structure: Internal system state can be decomposed into activation and con-
figuration subspaces. From the hardware perspective, the state space consists of the pos-
sible states of the hardware. The actual state space may be considerably more
constrained, consisting only of the set of states that can be reached from initial states us-
ing valid transition functions. As with the state-space of the environment, the relevant
granularity of the internal system state space will depend on the function being per-
formed. Characterization of structural complexity will leverage a key architectural design
pattern for incrementally expanding capabilities of cognitive systems through the addition
of new sensori-motor loops on top of existing sensori-motor loops.

• State Space Function: The function of the internal system is characterized in terms of the
mapping performed from state in the input subspace, to state in the output subspace. This
function can be described either extensionally in terms of input, output state pairs, or in-
tensionally with equations or objective functions.

• State Space Dynamics: Internal system dynamics is described by the trajectory of system
states that are determined by the state transition function.

Approved for Public Release; Distribution Unlimited.
18

3.1.3.3 Specialists, Generalists, and Autonomy.
In general, the more task complexity is reduced, the greater the degree of autonomy we can

achieve with limited resources [10, 11]. Specialization is a common design strategy in which be-
havioral breadth is traded for depth in order to achieve a performance objective within given re-
source constraints. Constraining the task can introduce regularities that can be exploited to
reduce required system complexity. Task specialization is the restriction of either the operating
range/environment of the system or a restriction of the breadth of the mission. At some point, if
the task is made simple enough, we cross the line from the autonomous into the automatic. The
current challenge of autonomy is to achieve a reasonable scaling between task breadth and sys-
tem resources. It is important when comparing different autonomous systems, to compare sys-
tems of similar degree of specialization. Matching task complexity to resources, or resources to
task complexity, is an important part of the design process.

Specialization can be understood as a reduction in/redistribution of the state-space complexi-
ty of the system enabled by a corresponding reduction in the state-space complexity of the
task/environment. System state space complexity can be reduced through a reduction in dimen-
sionality/degrees of freedom, complexity of quantization, or geometric/topological complexity,
Figure 9). For example, by operating within a restricted environment, environmental complexity
will be reduced as a result of reducing the number of degrees of freedom and increasing the pre-
dictability of the environment (e.g., operating in an environment with a constant temperature).
The corresponding system state-space can also be of reduced dimensionality (e.g., no need to
monitor or regulate temperature). There are a variety of different ways in which environmental
complexity can be reduced for the autonomous platform:

• External/User restriction of operating range
• Internal/Behavioral restriction of operating range: the platform autonomously avoids cer-

tain environmental conditions so that it stays within valid operating range.
• Active Control of the Environment:

the platform acts on the environment
to maintain a restricted set of states.

• Partitioning environments into parts
that can be handled autonomously
and parts that require the help of ex-
ternal systems (e.g., maybe autono-
mous platform can cope with
navigating around objects that don’t
move, but need help navigating
around moving objects).

• Gross/Coarse quantization/control of
some state space dimensions and fi-
ne quantization/control of others.

With the consequent reduction in task
complexity, systems can either achieve the
same performance with fewer resources, or
can achieve higher performance with same
amount of resources.

An important example of the latter strat-

Figure 9: The Relationships Between Internal
and External Complexity in the Context of

Autonomy; Between DoF and Quantization in
the Context of Specialization; Between

Specialization and Autonomy

Approved for Public Release; Distribution Unlimited.
19

egy involves the reduction in state space dimensionality and the increase in the quantization reso-
lution of some of the remaining dimensions, so that the overall number of states remains approx-
imately constant. This increase in resolution on fewer dimensions will permit the system to
implement more precise and accurate behaviors.
 3.1.3.3 Behavioral approaches to regulation of computational load and optimization of sys-

tem resources.
Typically one thinks of system behavior as being governed by processing/computational systems
for the purpose of achieving mission goals. There is, however, a class of behaviors, the purpose
of which is to govern processing/computational systems themselves. This class of behaviors can
be considered to be a subset of homeostatic behaviors that are intended to control/maintain inter-
nal state. There are two types of homeostatic mechanism: internal/covert regulatory mechanisms;
and external/overt mechanisms. In the case of regulation of processing, an internal regulatory
mechanism might be to throttle inputs to match the throughput of processors and avoid buffer
overflows (e.g., increasing the threshold on event based sensors to produce fewer events). An
external or behavioral regulatory mechanism might be a UAV slowing down flight speed in clut-
tered environments to maintain a constant sensor data generation rate. [12, 13] These behaviors
are similar to those mentioned in the previous section devoted to regulating the environment in
which the system operates, and within our framework, has the effect of simplifying the com-
plexity of the state space dynamics of the environment. In contrast, the internal regulatory mech-
anisms have the effect of reducing the complexity of system state-space dynamics. Figure 10
shows a UAV performing a navigation/collision avoidance task. At slow speeds, the rate at
which data needs to be processed and re-
sponded to are lower (top) than at high
speeds (bottom). Behavioral regulation of
information rates (e.g., by regulating speed)
is an important technique for managing data
with resource constrained computing.

While these behaviors may seem sec-
ondary to those directed at accomplishing
mission goals, when resources are limited
and maintaining autonomy is sufficiently
important, these behaviors can be of equal
importance to accomplishing mission goals.

3.2 Resource Analysis of Cognitive
Reconfigurable Computing

The cost structure for processing in autonomy applications differs from other classes of pro-
cessing task [7, 14]. Key metrics for autonomy, efficiency and operating range are addressed by
architectures that can accommodate real-time reconfiguration, tailoring end-to-end processing
chains to the current demands of the environment and task. Traditional metrics of optimality,
precision, and accuracy become soft constraints rather than hard requirements in autonomy ap-
plications. As we enter new era in computing technologies (the “era of dark silicon”) in which
we can place more transistors on a silicon die than we can afford to turn on at their maximum
operating speed, energy efficiency determines performance, and the energy efficiency of recon-
figurable architectures may be their key asset [15].

Figure 10: UAV Achieving a Collision
Avoidance Decision

Approved for Public Release; Distribution Unlimited.
20

In this section we present a particular canonical form for cognitive processing architectures,
which we call Context Switching Cognitive Processing Architectures (CSCPA). As will be dis-
cussed in greater detail below, from the hardware standpoint this architecture belongs to the class
of run-time reconfigurable (RTR) computing architectures [16]. From the control sys-
tems/functional standpoint this approach belongs to the class of Hybrid control systems. We will
argue that context switching architectures are: well suited to the nature of processing for auton-
omy; provide a convenient form for analysis; and are general enough to accommodate a wide
variety of autonomous processing systems. We believe this class is canonical in the sense that: 1)
completeness/computability/sufficiency: any autonomous control algorithm can be either imple-
mented or approximated to any desired accuracy with an algorithm from this solution space; and
2) complexity/optimality: there is a control algorithm in the space of solutions which has a com-
plexity that approximates to any desired accuracy the complexity of an arbitrary optimal algo-
rithm.
3.2.1 Background.

One of the most important design degrees of freedom in processing architectures is the de-
gree of programmability/configurability. The more programmable the architecture (i.e., degrees
of freedom in system configuration space), the greater the variety of functions it can perform. As
processors become more specialized/less configurable, they become faster and more efficient by
exploiting function specific architectural optimizations. Mismatches between architectural opti-
mizations and function/application characteristics, result in inefficiencies. Designers have chosen
to balance this flexibility-efficiency tradeoff in different ways resulting in a wide variety of dif-
ferent processing architectures. Many processor technologies are defined by where they fall
within the configurability/efficiency space (e.g., FPGA) [16].

At one extreme of programmability, universal machines, any computable function can be im-
plemented by programming the device after it has been created (i.e., post-fabrication program-
ming). The von Neumann general purpose processing (GPP) architecture heavily shares (e.g.,
through temporal multiplexing) a single or small number of generic compute elements which are
rapidly and frequently reconfigured using instruction bits to perform a specific task (i.e., high
dynamic complexity of configuration state). Re-configurability does have costs. Holding pro-
grams and reconfiguring functionality comes at the cost of area: area to store the configuration;
area for gates that have more functionality than strictly necessary; and area for wires that may
not be used. In cases that are not fully spatial (e.g., stored-program processors), we also pay for
energy-reading configurations from memory. These costs result in lower performance, higher
area, and higher energy than a fixed-function component. But these costs can be amortized over
a large set of applications and users and over the lifetime of the device. For these reasons, gen-
eral purpose von Neumann architectures gained a foothold early on in the development of pro-
cessing architectures [8, 16].

At the other extreme of programmability, application specific integrated circuits (ASICs), a
large number of compute elements is used without multiplexing, each of which performs a single
dedicated operation during a computation. For typical dedicated computing applications the de-
signer attempts to tailor the organization of the machine to a particular application or algorithm,
or even a particular data set, so as to maximize performance, minimize area, and minimize ener-
gy [8].

Spatially distributed processing elements and efficient interconnection networks are config-
ured to exploit application specific data and instruction locality characteristics resulting in reduc-
tion in computation time and computation energy. Inefficiencies occur when there is a mismatch

Approved for Public Release; Distribution Unlimited.
21

between architecture parameters and application characteristics such as: locality (as measured by
the Rent Exponent, i.e., p_arch vs. p_app); and word width (i.e., task size vs. device component
size).

Between these extremes there are devices whose configurability is limited spatially, tempo-
rally, and/or functionally (e.g., FPGAs, GPUs, Digital Signal Processors, DSPs, Coarse Grained
Reconfigurable Architectures, CGRAs). Even within the realm of universal machines there are a
range of processor architectures that fall on the spectrum between few general purpose multi-
plexed computational elements (e.g., RISC) to many special purpose less multiplexed computa-
tional elements (e.g., CISC). Reconfigurable computing (RC) addresses performing
computations with spatially programmable architectures (e.g., FPGAs). A key differentiator in
reconfigurable processing architectures is whether the reconfigurable resources are controlled
with a static configuration, like FPGAs, or with multi-context memories (e.g., Very Long In-
struction Word, VLIW-style CGRAs) [17]. To distinguish cases where the configuration remains
constant during an application from dynamic/on-line reconfiguration, the latter is termed run-
time reconfiguration (RTR). RTR allows for hardware to change organization during the compu-
tation as needed during different phases of the computation/behavior/task [10].

There are many organizational scales on which reconfiguration can occur, ranging from local
gate level to whole system and multi-system levels. The individual processor architectures dis-
cussed above each constitute optimizations to achieve a particular tradeoff between speed, ener-
gy, area, and flexibility, often built to support a single set of parameters tuned to the
homogeneous characteristics of particular applications. In practice, end-to-end applications do
not have homogeneous characteristics, but rather contain a mix of sub-computations with differ-
ent characteristics. The famous 90/10 rule from Knuth suggests that 90% of the runtime is spent
in only 10% of the code. Such a profile might benefit from a hybrid architecture that has two
components: one that focused on area minimization for the 90% of the code that runs only 10%
of the time; and another focused on maximizing computational density and minimizing the ener-
gy for the 10% of the code that runs 90% of the time [18]. At the board level, a variety of proces-
sor architectures supply building blocks from which larger scale heterogeneous processing
architectures can be constructed. This has led to designs that combine the area efficiency of a
GPP with the computational density and energy efficiency of a spatially reconfigurable compute
engine (e.g., commercial processor-FPGA hybrids such as Xilinx Zynq devices combining ARM
cores and FPGAs). In the following we will discuss a run-time reconfigurable heterogeneous
processing architecture that is targeted at autonomy applications in which dynamic configuration
of end-to-end processing flows will benefit performance both by enabling dynamic specialization
of processing capabilities to the current task demands to increase both autonomous performance
and computational efficiency.
3.2.2 Context Switching Cognitive Processing Architectures.

The core computational principle motivating context sensitive processing is the decomposi-
tion of complex task domains into piecewise simple domains, called contexts, enabling the use of
lower complexity/specialized algorithms to achieve the task objectives within each domain. This
is similar to piecewise approximation of functions. By choosing a sufficiently fine decomposi-
tion of the domain of the function, linear approximations to the function will be valid within each
domain element. With coarser partitions of the domain, more complex (e.g., quadratic) approxi-
mations will be needed to keep error low. In essence, context switching factorizes complex algo-
rithms into conditionally independent components (conditions are contexts), concentrating the

Approved for Public Release; Distribution Unlimited.
22

computational task of condition testing into a separate dedicated processing component. The ar-
chitectural components of the context switching computational architecture are:

• Context monitoring: this computational component continually monitors information
from sensors (of both internal and external state) and inputs from other sources (e.g., ex-
ternal systems, top down inputs) to detect changes in the context, and when a context
change occurs, to characterize, recognize/classify the new context.

• Context switching: once a new context is recognized, this component will recall/derive a
processing configuration specific to the new context, and will reconfigure the end-to-end
cognitive processing flows governing autonomous system behavior. The configurations
will consist of: assignments of programs to processors; settings of program and processor
parameters; and setting of information flows both within and between processors.

• Context specific processing: this computational component constitutes the end-to-end
cognitive processing that provides the control systems needed for operating within the
current context.

Figure 11 illustrates these components in a possible instantiation of a context switching ar-
chitecture in which contexts are linked to processing configurations via a lookup table. Context
monitoring, switching, and specific processing are all executing in parallel on hardware re-
sources. Right shows an instantiation of the architecture in which an array of context monitors
continuously receives data and evaluates in parallel. Triggering of a particular context causes an
associated context specific program to be loaded into context specific processing module.

Figure 11: Diagram of Functional Components of a Context Switching Processing
Architecture

Contexts and Complexity
The CSCPA is well suited to the computational demands of autonomous operations in natural

environments because natural environments tend to be composed of non-uniformly distributed
local niches with discontinuous boundaries and locally stationary statistical characteristics. The
local/stationary structure of the context can be exploited to simplify processing within that con-
text. These contexts are encountered discontinuously and unpredictably during autonomous op-
erations. As the task state leaves one context and enters another, the autonomous processing
changes to suit the new context. This approach, which can be broadly included in the class of
divide and conquer computational methods, has been widely applied in different application do-
mains (e.g., gain scheduling in flight control). Within each context, the simplification of the

Approved for Public Release; Distribution Unlimited.
23

state-space allows for specialized/special purpose/context specific processing, resulting either in
a reduction of computational resources needed, and/or an increase in the performance achievable
within the context. Specialization of processing to the local operating environment provides im-
provements in both the efficiency and performance of processing, over processing that is statical-
ly optimized to the global operational context.

With a fixed set of hardware resources, scaling autonomy to more complex tasks requires
that the resources be used more efficiently. When operating in dynamic and unpredictable real-
world scenarios, context sensitive run-time reconfiguration (RTR) can temporally multiplex lim-
ited hardware resources. The potential benefit of run-time reconfiguration is the specialization of
the context specific computation to the near-instantaneous needs of the task, reducing resources
(e.g., the size and energy) required/consumed. These benefits of improved context specific pro-
cessing performance/efficiency must be weighed against the costs of context monitoring and
context switching (e.g., the additional space required to hold extra configuration information and
the time and energy needed reconfigure).

A unique design aspect of this type of architecture is the need to co-optimize the definition of
contexts and the context specific processing. Contexts are portions of the task (environment and
mission) state space. Examples of broad contexts are:

• Environmental Contexts: flight regimes (e.g., wind conditions), environmental complexi-
ty (e.g., urban/rural, high clutter/low clutter)

• Internal Contexts: state of resources (e.g., battery level, weapons, processor loading), sys-
tem health, physical state (location, velocity), behavioral state

• Mission Contexts: threat level, op-tempo (e.g., high speed/low speed), mission phase
(e.g., explore/seek, track/pursue, exploit/attack/consume)

It is far more common in autonomy for the environment to be the trigger for either a change
in function being performed, or a change in the way in which a particular function is being per-
formed. We will refer to this situation as data-driven reconfiguration in contrast with task-driven
reconfiguration.

Partitioning of the environment into distinct contexts is determined both by the inherent
characteristics of the environment (e.g., statistical characteristics, ergodic decomposition) and by
the ability to discriminate different contexts, both from the standpoint of detec-
tion/characterization and action (i.e., if two distinct contexts do not have different context specif-
ic processing associated with them, then there is no reason to treat them as separate). The
granularity with which contexts are defined (i.e., quantization of state space into contexts), will
have a significant impact on computational costs, where the computational costs are the sum of
the costs of context monitoring, context switching, and context specific processing. There will
be a tradeoff between complexity of context monitoring/switching and complexity of context
specific processing. Figure 12 shows of the tradeoff between the granularity of the partitioning
into contexts and the complexity of the context specific processing. The notional graph shows
three different granularities of partitioning of the state space ranging from the degenerate single
element partition on the lower right, to a very fine partition at the upper left, corresponding to
different context monitoring/switching complexities.

There is some freedom in creating a context partition on the part of the designer, who needs
to balance the costs of context monitoring and switching with the costs of context specific pro-
cessing. At one extreme, one large (degenerate) context can be created which never changes, in
which case there are no costs associated with context monitoring or switching, and all the com-
plexity needed to cope with complex environments must be contained within the context specific

Approved for Public Release; Distribution Unlimited.
24

processing. At the other extreme, a context partition can be created with many elements that are
so small that, within each of these contexts the environment can be considered constant so that
the context specific processing for each context may be as simple as constant functions. In this
case the computational cost of context specific processing is minimized, and most of the com-
plexity (and cost) is pushed into the context monitoring and context switching components. In
this case, monitoring for many small contexts is expensive, and context switching will occur fre-
quently, incurring a context switching cost. Another cost that needs to be accounted for is the
design cost of implementing a context specific algorithm for each context in the partition. If the
partitioning is very fine and there is no sys-
tematic way of deriving context specific al-
gorithms from context characteristics, the
burden of designing individual context spe-
cific algorithms will be untenable.

Here we conjecture an analogue to the
90/10 rule, for the domain of autonomy:

90% of the computational resources of
autonomous systems are spent in exe-
cuting the 10% of the code (context
specific processing).

This is saying that autonomous systems
will spend most of their time on context spe-
cific processing, but need to be continuously
monitoring and respond quickly to changes in
context that will occur sparsely and unpredictably. The other 90% of the code that is dedicated to
context monitoring and switching must be implemented so as to minimize the computational re-
source consumption. By creating a context partition at the appropriate level of granularity, the
CSCPA will efficiently handle the 90/10 split in autonomy tasks by: exploiting context specific
structure to optimize the efficiency of context specific processing; minimizing the effort needed
for context monitoring and the frequency of context switching (i.e., see discussion of efficient
event based context monitoring below).

We also conjecture that another form of the 90/10 rule holds for autonomy:

90% of the runtime in autonomous systems is spent in monitoring for 10% of infor-
mation that is task relevant (requiring a response).

3.2.3 Analysis of CSCPA Performance.
There are many factors to consider when designing an autonomous system to perform a task.

All aspects of the processing, detection and even system idling need consideration when evaluat-
ing processing architectures. This work aims to describe an example analysis process to follow
when evaluating designs with respect to overall power usage.

Figure 12: The Tradeoff between Granularity
of the Partitioning into Contexts and

Complexity of the Context Specific Processing

Approved for Public Release; Distribution Unlimited.
25

For this analysis, we will use the standard definition of power, where 𝑊𝑊 is power measured
in Watts, 𝐽𝐽 is energy measured in Joules, and 𝑡𝑡 is time in seconds:

𝑊𝑊 =
𝐽𝐽
𝑡𝑡

(1)

The goal is to minimize the value of 𝐽𝐽 by finding the optimal combination of the processors,
algorithms, and overall logic.
3.2.3.1 Example Scenario.

Imagine designing a system for a UAV flying a reconnaissance mission. We are tasked to de-
sign an autonomous control system that can adapt the control law to the current weather condi-
tions and terrain. If the drone encounters a significant change in environment, such as the change
between flying in a dessert and then flying near mountains, it will adjust its flight control, (Fig-
ure 13). This system is power constrained, and the mission specifies that the task must complete
in a defined amount of time.

Figure 13: A Drone Flying in Two Separate Contexts, Which in this Case are
Environments

3.2.3.2 Problem Breakdown.
We will break this problem into three main parts: context monitoring, context switching, and

context specific processing.
Context Monitoring

This component of the system has the job of monitoring the environment and triggering any
changes necessary. This can potentially be done in two different manners: a polling approach, or
an event-based/interrupt approach [19].

In a polling approach, we imagine a sensor that is constantly sampling its environment at
some frequency, (Figure 14). With each poll, a small amount of processing is performed that de-
termines if a reconfiguration is needed, such as a change in UAV navigation or sensing algo-
rithms. During the rest of the time, the polling system lays idle, waiting until its next scheduled
time to poll once again.

In an event-based/interrupt system, there is no continual checking needed. Rather, the system
relies on asynchronous signals/interrupts to trigger a context switch. These signals can come
from sensors or other systems at any time. Upon receipt of trigger signals, associated reconfigu-
ration can be performed immediately.

Approved for Public Release; Distribution Unlimited.
26

Events triggering reconfiguration can range in complexity from very simple (single bit
changes) to very complex (complex configuration of events).

Figure 14: Comparison of Polling and Event Based Sensing Schemes

Context Switching
Context switching refers to a reconfiguration process that may consist of multiple subtasks,

such as saving previous state, recalling context specific algorithms, loading in new or saved pa-
rameters, and initialization [20]. Each of these aspects take a certain amount of time and power
to complete, so they too must be considered when trying to minimize the overall power con-
sumption of the system, (Figure 15).

Figure 15: Example of a Context Switch Timeline

Context Specific Processing
The last and likely most significant consumer of power for the overall system is the context

specific processing that is running continuously between context switches. In the UAV example,
this would be the navigation and flight control algorithms. Depending on their complexity, this
processing may be very power hungry and time consuming. Algorithms for different contexts
may differ in complexity. If the system often uses the more expensive algorithms, it will con-
sume more power. The overall complexity will therefore depend upon the probability distribu-
tion across contexts. Figure 16 shows an example of this. There are periodically context changes
that trigger different algorithms. Each algorithm has its own power consumption.

Approved for Public Release; Distribution Unlimited.
27

Figure 16: Example of Algorithm Timeline
3.2.2.3 Estimating Power Consumption.

In this paper, we will consider four different processors types: Central Processing Units
(CPUs) [21, 22], Graphics Processing Units (GPUs) [23], Field Programmable Gate Arrays
(FPGAs) [24, 25, 17], and neuromorphic processors like IBM’s TrueNorth [26, 27]. The same
process can be considered for nearly any processor type in order to get a rough estimate of which
architecture would work best for the task.
Context Monitoring

In order to estimate the amount of power that the polling or event-based scheme might con-
sume, we first estimate how often we are going to be polling for information, or how often we
are going to be receiving events. We will define the polling scenario frequency as 𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, meas-
ured in Hz. The polling rate will determine the amount of power necessary. This estimate in-
cludes the cost of reading sensor data as well as the cost of processing this data to determine if a
context switch condition has occurred. After obtaining and processing the data, the monitoring
system will sit at idle, waiting for the next scheduled time to poll, (Figure 17).

Figure 17: Breakdown of Polling Scheme
The average power consumed by polling is defined as 𝑊𝑊𝑐𝑐ℎ𝑒𝑒𝑒𝑒𝑒𝑒

𝑊𝑊𝑐𝑐ℎ𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑊𝑊𝑔𝑔𝑔𝑔𝑔𝑔 + 𝑊𝑊𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (2)

Applying Equation 1, the values of 𝐽𝐽𝑔𝑔𝑔𝑔𝑔𝑔 and 𝐽𝐽𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 need to be determined, as well as their
respective time values. These values are determined by the algorithms and the data that is needed
during each polling event. If the sensor is an infrared camera looking at the heat signature from

Approved for Public Release; Distribution Unlimited.
28

the ground, then the “get” process would require the retrieval of an entire image frame, and the
processing might involve analysis of the whole frame. In contrast, if the sensor is a thermometer,
reading and processing a single temperature value then the cost will be dramatically less.

Using estimates of the power consumption per operation and the approximate number of op-
erations per polling operation (#op), we can estimate the number of Joules necessary to perform
a poll.

𝐽𝐽𝑔𝑔𝑔𝑔𝑔𝑔 = #𝑜𝑜𝑜𝑜,𝑔𝑔𝑔𝑔𝑔𝑔 𝐽𝐽𝑜𝑜𝑜𝑜 (2)
𝐽𝐽𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = #𝑜𝑜𝑜𝑜,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝐽𝐽𝑜𝑜𝑜𝑜 (3)

Similarly, we can determine the amount of time for each component of polling.

𝑡𝑡𝑔𝑔𝑔𝑔𝑔𝑔 = #𝑜𝑜𝑜𝑜,𝑔𝑔𝑔𝑔𝑔𝑔 𝑡𝑡𝑜𝑜𝑜𝑜 (4)

𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = #𝑜𝑜𝑜𝑜,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑜𝑜𝑜𝑜 (5)

Finally, the amount of time and power used during the idle time is easily calculated as fol-
lows:

𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =
1

𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
− �𝑡𝑡𝑔𝑔𝑔𝑔𝑔𝑔 + 𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎� (6)

The idle power can obtained from processor datasheets when available, or can be derived
from performance benchmarks, otherwise. We estimate that the idle power consumed is approx-
imately 5% of the designed thermal design power (TDP) of a processor, where TDP is the ap-
proximate amount of thermal power dissipated by processor under normal operation. While this
is not an exact measure of processors power consumption, it is often a good estimate. Typically
this (TDP) value for CPUs and GPUs can be obtained from spec sheets.

We estimate the energy of the idling systems as follows:
𝐽𝐽𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (7)

Combining all the power values, we obtain the poll power required.

𝑊𝑊𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�𝐽𝐽𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝐽𝐽𝑔𝑔𝑔𝑔𝑔𝑔 + 𝐽𝐽𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎� (8)

Event-based polling can be similarly analyzed. Because event-based polling is asynchronous,
we must use an estimate of the average frequency of events in place of a fixed polling frequency.
We call this estimated event frequency 𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒. This can be used identically as 𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝.
Context Switching

In the estimation of power consumption used in context switching, we separate the switching
process into 4 different portions, each of which can be analyzed separately. These four segments
are: Save state; Load Program; Reprogram; and Initialize. Each of these segments serves its own
purpose and may function slightly differently depending on the platform on which they are run-
ning. However, the final result will still be an estimation of the average amount of power neces-
sary, (Figure 18).

Approved for Public Release; Distribution Unlimited.
29

Figure 18: Breakdown of Context Switching Element of the System
As with the context monitoring, we can estimate the amount of power necessary to perform

context switches as:
𝐽𝐽𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ = 𝐽𝐽𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝐽𝐽𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝐽𝐽𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 𝐽𝐽𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (9)

The save state phase includes all necessary saving of weights, results, and other values that
need to be stored from the previously run algorithm. This could also include the saving the pro-
gram execution state that may be needed to reinstate processing later. This may not always be
necessary or even possible, depending on the algorithm and processor type, but is must be con-
sidered when it is.

The amount of power consumed in switching context is highly dependent on the amount of
information that needs to be stored. If a large table needs to be kept, it will likely require more
power than a few cached weights. We estimate the required power using values from processor
specification sheets. If the amount of data to be stored is known, or can be projected, it is simply
as follows:

𝐽𝐽𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑤𝑤 =
𝑊𝑊𝑚𝑚𝑚𝑚𝑚𝑚

𝐵𝐵𝐵𝐵𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 (10)

𝐽𝐽𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐽𝐽𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑤𝑤#𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑤𝑤 (11)
The value of 𝐽𝐽𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑤𝑤 represents the amount of power necessary to write one byte of memory,

when 𝑊𝑊𝑚𝑚𝑚𝑚𝑚𝑚 is the rated power of the memory being used, and 𝐵𝐵𝐵𝐵𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 is the write bandwidth of
that same memory. The total power needed to save is then simply the amount of number of bytes
needing to be stored multiplied by the cost of each byte, as seen in Equation 12. Finally, the
amount of time this procedure will take is found by taking #𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑤𝑤 and dividing by the write
bandwidth of the memory.

The amount of power needed to reprogram the processor is the most difficult to estimation.
This will vary greatly between processor types. Reprogramming a CPU and GPU will be fast due
to their design for temporally multiplexing hardware. However, for an FPGA or a TrueNorth,

Approved for Public Release; Distribution Unlimited.
30

where they are more designed to be single purpose, loading a new algorithm can likely mean re-
programming/re-flashing the chip entirely[27, 17].

As a conservative measure for making sure enough power is supplied, it is best to assume
that the reprogramming process is going to consume near the max amount of power that the pro-
cessor is rated for. For a CPU or GPU, this value would be listed as the TDP from a specification
sheet. For an FPGA, it would be safe to estimate this value by using the maximum voltage and
current values from its voltage regulator. Using the power formula, 𝑃𝑃 = 𝐼𝐼 × 𝑉𝑉, we can get an es-
timate of maximum power used. It is not very likely that this much power will be used, but an
overestimation will ensure enough power is available. Lastly, for something like IBM’s True-
North, since published data is scarce, we can just take the highest recorded power values and
time for our accepted programming power.

While finding exact values for the programming of a specific chip is difficult, once a value is
acquired, it can be applied to the same formulas as everything else to give the amount of power
required to reprogram in an algorithm.

𝐽𝐽𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑊𝑊𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 (12)
By multiplying the estimated power, by the approximate about of time necessary to repro-

gram, 𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, we can get the number of Joules required.
The next portion requiring estimation is the loading of weights, tables, and other data that

may need to be loaded for the algorithm to be run. This is the inverse of the saving portion of the
switching element, and can thus be estimated in much the same way. The only true difference is
that the amount of power needed is not determined by the write bandwidth, but by the read
bandwidth. Using the read bandwidth we get the equations for loading to be as follows:

𝐽𝐽𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑟𝑟 =
𝑊𝑊𝑚𝑚𝑚𝑚𝑚𝑚

𝐵𝐵𝐵𝐵𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
(13)

𝐽𝐽𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝐽𝐽𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑟𝑟#𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑟𝑟 (14)

Finally, we must consider the possibility of the system needing to initialize some other com-
ponents. For some systems, this may not be necessary, but for others it might. This includes the
need to send messages, open up I/O ports, and whatever other sort of initialization needs to take
place. Because this process will vary highly, we will use the same general estimation seen in the
analyze phase of the sensing element, presented above. This initialization can be generalized as
an algorithm, much like what the above described analysis is. Making this assumption, the
amount of power necessary is simply the number of operations necessary multiplied the average
power per operation.

𝐽𝐽𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = #𝑜𝑜𝑜𝑜,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝐽𝐽𝑜𝑜𝑜𝑜 (15)
With all elements of the switching stage estimated, we can finally complete the equation for

the power required for switching.

𝑊𝑊𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ =
𝐽𝐽𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝐽𝐽𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝐽𝐽𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 𝐽𝐽𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ
(16)

𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ = 𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (17)

3.2.2.4 Analysis.
The final component of the process is evaluating the amount of power that is needed to run

the algorithm that is controlling the system overall. For the drone example, it could be navigation
system that is keeping the drone flying and not colliding with anything in the environment. This

Approved for Public Release; Distribution Unlimited.
31

portion of the system is highly dependent on the algorithm of choice, but nonetheless can still be
put into a general form. As with the initialization phase of the context switch and the analyze
phase of the polling scheme, we can make assumptions to break it down into a simple calculation
of the number of operations multiplied by the estimated amount of power per operation.

𝐽𝐽𝑎𝑎𝑎𝑎𝑎𝑎 = 𝐽𝐽𝑜𝑜𝑜𝑜#𝑜𝑜𝑜𝑜,𝑎𝑎𝑎𝑎𝑎𝑎 + 𝐽𝐽𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑤𝑤#𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑤𝑤 + 𝐽𝐽𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑟𝑟#𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑟𝑟 (18)

𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎 = #𝑜𝑜𝑜𝑜,𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑜𝑜𝑜𝑜 + # (19)

𝑊𝑊𝑎𝑎𝑎𝑎𝑎𝑎 =
𝐽𝐽𝑎𝑎𝑎𝑎𝑎𝑎
𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎

(20)

It is also very likely that the algorithm will take require sort of memory reading and writing,
so we can use the same estimations that we saw in the save and load portions of the context
switching. These values can then be added to the operation costs of the algorithm itself to finally
give the value of 𝐽𝐽𝑎𝑎𝑎𝑎𝑎𝑎. Using the value of 𝐽𝐽𝑎𝑎𝑎𝑎𝑎𝑎 and an estimated time to complete the algorithm,
we can get a value for 𝑊𝑊𝑎𝑎𝑎𝑎𝑎𝑎.

The above calculation of 𝑊𝑊𝑎𝑎𝑎𝑎𝑎𝑎 only assumes that the algorithm is going to be run once
through, but it is going to run for a while, assuming that the context the plan is flying through
does not change after one single iteration of the algorithm. Because of this, we need to assume
some sort of frequency of condition changes that would cause a context switch, denoted by
𝑓𝑓𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎. With this assumption, we can calculate how much power, on average, the entire algo-
rithm and context switching will take. The inverse of 𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ gives the amount of time between
context switches, and since we already have the amount of time the switch will take, we can cal-
culate the time that the algorithm will run, as well as the total amount of joules it will require.

𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =
1

𝑓𝑓𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
− 𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ (21)

𝐽𝐽𝑎𝑎𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑊𝑊𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (22)

Now that the value of 𝐽𝐽𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 has been found, we can combine it with the value of 𝐽𝐽𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ to
get the average power of the entire algorithm processor, including context switches, at some giv-
en frequency of change, 𝑓𝑓𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎.

𝑊𝑊𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = �𝐽𝐽𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ + 𝑊𝑊𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎�𝑓𝑓𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (23)

Combined Estimations
With the calculations of the power for the polling, switching, and analysis setups of our sys-

tems, we can combine all of them to get an approximate value for the amount of power that the
system will require to run constantly, and then see how much power something like a battery
might need to supply to keep it running.

𝑊𝑊𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑊𝑊𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑊𝑊𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 (24)

With the value of 𝑊𝑊𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, you can estimate the amount of power necessary over any given
amount of time on average.

𝐽𝐽𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑊𝑊𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (25)

Approved for Public Release; Distribution Unlimited.
32

These final values of 𝐽𝐽𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 and 𝑊𝑊𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 can then be used to estimate the amount of power,
and even the voltage and current required to keep the system running.
Real-World Estimation Context Monitoring

Nearly all of the estimation above is assuming generalized information, but it is important to
understand how this process would likely happen with commercial off-the-shelf (COTS) prod-
ucts. For this section, we will outline this process with popular processors in all the above men-
tioned categories: CPU, GPU, FPGA, and TrueNorth, (Table 1).

Table 1: General Information for COTS Processors Used in Evaluation of Respective
Power Consumption

Processor Architecture Manufacturer Model Idle Power (W) TDP Clock Speed
CPU x86 Intel Core i7 2600K 4.7500 95.0000 3.4 GHz

TrueNorth True North IBM TrueNorth 0.0040 0.0730 1 kHz
FPGA FPGA Xilinx Virtex5 1.5000 N/A 100 MHz
GPU GPU Sapphire Radeon HD 7970 15.0000 300.0000 925 MHz

As described in the sensing calculation section, we need to obtain several values in order to
determine an estimated power for the polling or event-based scheme: 𝐽𝐽𝑔𝑔𝑔𝑔𝑔𝑔, 𝐽𝐽𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑡𝑡𝑔𝑔𝑔𝑔𝑔𝑔, and
𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎. For these calculations we can use the estimated clock speed that is typically found on a
specification, or the clock speed that is defined when writing the FPGA program. This also, may
be difficult to retrieve for a neuromorphic processor, like the TrueNorth, but a rough order of
magnitude estimate will yield relatively similar estimates to the actual values. Using this clock
speed, and the TDP, we can estimate the number of joules per operation, by dividing TDP by the
clock speed.

𝐽𝐽𝑜𝑜𝑜𝑜 =
𝑇𝑇𝑇𝑇𝑇𝑇

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 × #𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
(26)

Next, we need to get the number of operations for the poll or event and then the analysis.
This part is very dependent on the situation, and thus can only loosely be demonstrated. For this,
we will assume that the polling takes 100 operations and the analysis takes approximately 5000
operations. This is very naïve, as it is not likely the process will be identical for each processor
type, but for simplicity sake, we will assume that they will be. With the number of operations,
we can figure out how quickly this can happen, by dividing the number of operations by the
quantity of the clock speed multiplied by the number of threads on the processor. This assumes
that the process can be easily parallelized. This may not be true, so if it is not, simply ignore the
number of threads, which makes it as if the process is completely single threaded.

𝑡𝑡 =
#𝑜𝑜𝑜𝑜

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 × #𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
(27)

Using these values and estimates, we calculate and estimate the necessary power for each
processor type to complete a poll. Along with this and a frequency of polling, which we will as-
sume is once every 10 seconds or 0.1 Hz, we get an average power to poll the environment for
each type.

As seen in Table 2, because the operations require so few cycles, the amount of power con-
sumption comes mainly from the system idling. However, if the polling and analysis were to be
more intensive and require more operations, this total power value would increase.

Approved for Public Release; Distribution Unlimited.
33

Table 2: Estimated power values for each processor type
Processor Type Model Clock Speed TDP (W) # threads 𝑾𝑾𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 (W)

CPU Core i7 2600K 3.4 GHz 95 1 4.75001354
TrueNorth TrueNorth 1 kHz 0.073 256 0.04087273

FPGA Virtex5 100 MHz 30 4 1.50015109
GPU Radeon HD 7970 925 MHz 300 512 15.0001652

Real-World Estimation Context Switching
The same process can be followed for the rest of the system to get their respective power es-

timates. We will follow a similar process for the switching portion. For this analysis, we will ig-
nore the “init” portion of the process, under the assumption that no new initialization will be
necessary, but this could easily be included if it is actually required.

For all of the memory portions, the saving and loading of parameters, we will also assume
the same information is being saved in all scenarios, and the same form of memory is being used.
Because there is no difference in our memory type or the amount of information being saved or
loaded, we can just assume a single value for this. For example, both 𝐽𝐽𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and 𝐽𝐽𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, can be as-
sumed to be approximately 0.1 Joules each, and will take approximately 1 millisecond. We make
this assumption for brevity, but if the memory type were to vary for each processor type, we
would calculate the cost of each memory operation and the number of memory operations neces-
sary thus giving us the total cost of the saving and loading data.

The most costly portion of the context switching is the actual reprogramming of the proces-
sor. Much like the idling that we see in the sensing portion, we must make some broad assump-
tions regarding the cost of reprogramming a processor. For a CPU and GPU, which are more
designed to do many different tasks, the switching is relatively cheap, but for an FPGA and IBM
TrueNorth, these systems likely need to be re-flashed completely, which takes more time and
energy. For all systems we will assume that the power required is equal to the TDP, but the
amount of time necessary will vary. We will make the assumptions that are listed in the Table 3.

As seen in Table 3, we assume that the TrueNorth and FPGA take much longer to program.
Because of this elongated programming time, the necessary power to program is sometimes
higher than with the CPU or GPU despite the TrueNorth and FPGA having a significantly lower
TDP. While this will not matter all that much if we are switching contexts infrequently, but must
be considered more if contexts need to be changed more often.

Table 3: Estimates of the Power Required to Program the Processor to Run Algorithms
Processor Type Model TDP (W) 𝒕𝒕𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 (sec) 𝑱𝑱𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 (J)

CPU Core i7 2600K 95 0.001 0.095
TrueNorth TrueNorth 0.073 5 0.365

FPGA Virtex5 30 0.5 15
GPU Radeon HD 7970 300 0.001 0.3

With the estimated cost of the programming the processor, as well as our assumption about
the cost to save and load parameters, we can figure out the energy necessary for the context

Approved for Public Release; Distribution Unlimited.
34

switch. Table 4 combines all of these values. These final values will be used after we evaluate
the cost of the actual algorithm running.

Table 4: Estimated Costs of the Different Portions of Context Switching
Processor Type Model TDP (W) 𝒕𝒕𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 𝑱𝑱𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 𝑱𝑱𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔/𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍 𝒕𝒕𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔/𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍

CPU Core i7 2600K 95 0.001 0.095 0.1 0.001
TrueNorth TrueNorth 0.073 5 0.365 0.1 0.001

FPGA Virtex5 30 0.5 15 0.1 0.001
GPU Radeon HD 7970 300 0.001 0.3 0.1 0.001

Real-World Estimation Context Specific Processing
The final part to consider is the algorithm that we are going to be running. This algorithm is

running constantly, as long as a context switch is not occurring. This is very similar to how we
treated the idle power during our estimation of the sensing power. Because this will be running
constantly, we need to figure out on average how long between context switches, as these are the
points that terminate and begin an algorithm running. For this example estimation, we will as-
sume that this process will take place every 100 seconds.

We will assume that there are no read or write operations in the algorithms, for simplicity.
Another assumption is that all potential algorithms will take on average 500k operations to com-
plete. Using these assumptions we can figure out how long this will take and the amount of ener-
gy, (Table 5).

Table 5: Estimates of Power to Run the Algorithm Constantly Given 500k Operations are
Necessary

Processor Type Model Cores Threads 𝒕𝒕𝒂𝒂𝒂𝒂𝒂𝒂 (s) 𝑾𝑾𝒂𝒂𝒂𝒂𝒂𝒂 (W)
CPU Core i7 2600K 4 2 7.35E-05 47.5

TrueNorth TrueNorth 256 128 3.91 0.0365
FPGA Virtex5 16 8 6.25E-04 15
GPU Radeon HD 7970 2048 128 4.22E-06 18.75

Using the values in Tables 3-5, and the process described in the analysis section of Estima-
tion of Power Consumption subsection, we can get the amount of power necessary to run the en-
tire analysis (Table 6).

Table 6: Estimated Values of the Cost to Run the Whole Analysis
Processor Type Model 𝒕𝒕𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 (s) 𝑱𝑱𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 (J) 𝑾𝑾𝒂𝒂𝒂𝒂𝒂𝒂 (W) 𝒕𝒕𝒂𝒂𝒂𝒂𝒂𝒂 (s) 𝑾𝑾𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂 (W)

CPU Core i7 2600K 0.003 0.295 47.5 99.997 47.501525
TrueNorth TrueNorth 5.002 0.565 0.0365 94.998 0.04032427

FPGA Virtex5 0.502 15.2 15 99.498 15.0767
GPU Radeon HD 7970 0.003 0.5 18.75 99.997 18.7544375

Final Total Power Estimation
Now that everything is estimated we can combine the sensing scheme with the analysis to get

an estimate of the amount of power to run the entire system. This can be any combination of the
different processor types. A CPU could be running the polling while a TrueNorth is running the

Approved for Public Release; Distribution Unlimited.
35

analysis. We simply need to add the two power values together to get the total approximate
amount of power to run everything.
3.2.2.5 Potential Realizations of the CSCPA.

There are a variety of ways in which the CSCPA can be realized using current technologies.
One of the advantages offered by CSCPA is the ability to parallelize the Context Monitoring and
the Context Specific Processing components. Our analysis supports the case for using heteroge-
neous reconfigurable processing hardware in implementing CSCPA when the num-
ber/complexity of contexts is sufficiently large, and the frequency of context changes is
sufficiently low.

We specifically considered the use of event based processing (e.g., TrueNorth) for context
monitoring because of the low power needed for continuous monitoring of sparsely occurring
complex events. The low precision, probabilistic, and approximate nature of event based pro-
cessing techniques is well matched to the nature of contexts in the environment, which do not
have precisely definable boundaries or features. The context specific processing component can
be implemented using more traditional reconfigurable processing hardware (e.g., GPP, FPGA)
that executes synchronously at high rates.

Approved for Public Release; Distribution Unlimited.
36

4.0 RESULTS AND DISCUSSION

Below is an enumeration of some of key high level points for program managers and system de-
signers to take into consideration when making decisions regarding the processing capabilities
needed for autonomous systems.

• System complexity must be designed to match the requirements of task complexity.
Matching task complexity to system resources, or resources to task complexity, is an im-
portant part of the design process. The first step in the design process should be a detailed
analysis of the task complexity.

Table 7: Components of Complexity Assessments to be Performed During System Design

DoF Stands for Degrees of Freedom; Q stands for Quantization resolution.

• Greater behavioral complexity can provide overall system level energetic advantages that
offset the larger processing SWAPC. These impacts must be considered during design
when allocating SWAP to processing.

o For example, the value of pro-active computation is a tradeoff between the cost of
pro-active processing and the increase in the value of future actions in achieving
the objective (sequential decision making/dynamic programming/model predic-
tive control).

• Behavioral regulation of processing load to match available resources should be consid-
ered as an important cognitive function providing a means for autonomous systems to re-
lax static constraints on operating range.

• Task complexity can be addressed by splitting the complexity across the internal and ex-
ternal (human or machine) systems, at the cost of reducing autonomy and introducing de-
pendencies on communications.

o System designs with dynamically adjustable autonomy should be considered as a
compromise that permits resource savings by relying on external systems when
communications are available and can move toward progressively greater auton-
omy as communications degrade.

Approved for Public Release; Distribution Unlimited.
37

• The state space formalism provides a common framework for the formulation of both
system and task complexity, and can accommodate a wide variety of different computa-
tional models including both discrete and continuous systems, and asynchronous and
synchronous system.

o The computation of the energy consumed during end-to-end computations can be
partitioned into energy consumed in maintaining state and energy consumed in
state transitions.

• Overall complexity consists of distinct contributions from Structural, Functional, and
Dynamic complexity. These different contributions to complexity can be traded off
against each other.

o Structural complexity is determined by state space dimensionality, quantization,
and topological/geometric complexity.

o Scaling the task/functional complexity can be addressed in the design of the pro-
cessing system either by scaling its structural or dynamic complexity (or some
combination of the two).

• Specialization of function is an important design strategy for decreasing resource con-
sumption and increasing performance, at the cost of operating range and/or autonomy.

o It is important when comparing autonomous systems, to compare systems of simi-
lar degree of specialization.

• Division of internal system complexity between configuration complexity and activation
complexity has important consequences for resource usage. Individual processing archi-
tectures are optimized to a particular operating point in this division between configura-
tion/activation complexity.

• In system level end-to-end analysis and implementation, it is convenient to partition task
state space into piecewise simple contexts, so that processing requirements for context
recognition, context switching, and context specific processing can be accounted for sep-
arately.

• 90/10 Rules of Context Sensitive Processing for Autonomy:
o 90% of the computational resources of autonomous systems are spent in execut-

ing the 10% of the code related to context specific processing/activation complex-
ity.

o 90% of the code in autonomous systems is devoted to monitoring for task relevant
context changes that occur 10% of the time (configuration complexity).

Approved for Public Release; Distribution Unlimited.
38

5.0 CONCLUSION

Increasing the autonomy of air assets requires the integration of many different cognitive func-
tions currently performed by pilots into real-time end-to-end cognitive processing flows execut-
ing on embedded hardware. The growing variety of low SWAP-C specialized processing
technologies (e.g., GPU, FPGA, and Neuromorphic) is increasing both the complexity and im-
pact of autonomous system design on system level/mission level efficiency and effectiveness.
Design of optimized system level autonomy requires a framework for the performance assess-
ment of entire end-to-end flows, driven by and interacting with operationally realistic environ-
ments. In this paper we provide a statespace framework that enables:

• the analysis of a wide variety of different computational models including both dis-
crete and continuous systems, and asynchronous and synchronous system.

• the formulation of complexity of the environment (i.e., physical systems) and com-
plexity of the autonomous system (i.e., computational systems) within the same
framework.

• the description of complexity along three distinct dimensions: Structure; Function; and
Dynamics.

This framework is useful from the prescriptive/engineering standpoint in capturing key engineer-
ing decision points and requirements and dependencies between engineering decisions from top
down perspective. Within this framework it becomes easy to formulate key correspondences
(e.g., between task and system complexity, between internal system complexity and external sys-
tem complexity) and tradeoffs (e.g., between system specialization and autonomy, between
structural, function, and dynamic complexity). We apply this framework to the analysis of a pro-
posed context switching cognitive processing architecture which exploits event based processing
to efficiently perform context monitoring and context switching, and more conventional proces-
sors to perform within context processing. When the task environment consists of many distinct
complex contexts, and context switching occurs on a slower timescale (order of magnitude) than
update rates needed for within context behaviors, there can be significant advantages to using
event based processing hardware in conjunction with conventional processing.

Ultimately, we hope that this analysis framework provides a useful foundation that will facilitate
the use of a variety of specialized processing technologies to provide unique advantages in ad-
dressing both the strict SWAP constraints on UAV processing and the demanding processing
requirements of autonomous behavior in complex and rapidly changing environments.

Approved for Public Release; Distribution Unlimited.
39

6.0 REFERENCES

1. Ehsan, Shoaib, and Klaus D. McDonald-Maier, "On-board Vision Processing for Small
UAVs: Time to Rethink Strategy," Adaptive Hardware and Systems, 2009, AHS 2009,
NASA/ESA Conference on, IEEE, 2009.

2. Volpe, Richard, et al., "The CLARAty Architecture for Robotic Autonomy," Aerospace
Conference, 2001, IEEE Proceedings, Vol. 1. IEEE, 2001.

3. Chong, Hui-Qing, Ah-Hwee Tan, and Gee-Wah Ng, "Integrated Cognitive Architectures:
A Survey," Artificial Intelligence Review, Vol. 28, No. 2, pp. 103-130, 2007.

4. Cancro, George J. "APL Spacecraft Autonomy: Then, Now, and Tomorrow," Johns Hop-
kins APL Technical Digest, Vol. 29, No. 3, pp. 226, 2010.

5. Huang, Hui-Min, et al., "A Framework for Autonomy Levels for Unmanned Systems
(ALFUS)," Proceedings of AUVSI Unmanned Systems, 2005.

6. Pratt, Gil, personal communication.
7. Kambadur, Melanie, and Martha A. Kim, "An Experimental Survey of Energy Manage-

ment Across the Stack," Proceedings of the 2014 ACM International Conference on Ob-
ject Oriented Programming Systems Languages & Applications, ACM, 2014.

8. DeHon, Andre, "Fundamental Underpinnings of Reconfigurable Computing Architec-
tures," Proceedings of the IEEE, Vol. 103, No. 3, pp. 355-378, 2015.

9. Blem, Emily, Jaikrishnan Menon, and Karthikeyan Sankaralingam, "Power Struggles:
Revisiting the RISC vs. CISC Debate on Contemporary ARM and x86 Architec-
tures," High Performance Computer Architecture (HPCA2013), 2013 IEEE 19th Interna-
tional Symposium on. IEEE, 2013.

10. Murphy, Robin, and James Shields, "The Role of Autonomy in DoD Systems, "Defense
Science Board, 2012.

11. Vernon, David, Giorgio Metta, and Giulio Sandini, "A Survey of Artificial Cognitive
Systems: Implications for the Autonomous Development of Mental Capabilities in Com-
putational Agents," Evolutionary Computation, IEEE Transactions on, Vol. 11, No. 2,
pp. 151-180, 2007.

12. Soatto, Stefano, "Actionable Information in Vision," Machine Learning for Computer Vi-
sion, Springer Berlin Heidelberg, pp. 17-48, 2013.

13. Sharon, Yoav, Daniel Liberzon, and Yi Ma, "Adaptive Control Using Quantized Meas-
urements with Application to Vision-only Landing Control," Decision and Control
(CDC), 2010 49th IEEE Conference on. IEEE, 2010.

14. Wray, R. E., and Christian Lebiere, "Metrics for Cognitive Architecture Evalua-
tion," Proceedings of the AAAI-07 Workshop on Evaluating Architectures for Intelli-
gence, 2007.

15. Cassidy, Andrew S., Julius Georgiou, and Andreas G. Andreou, "Design of Silicon
Brains in the Nano-CMOS era: Spiking neurons, Learning Synapses and Neural Architec-
ture Optimization," Neural Networks, Vol. 45, pp. 4-26, 2013.

16. Tessier, Russell, Kenneth Pocek, and Andre DeHon, "Reconfigurable Computing Archi-
tectures," Proceedings of the IEEE, Vol. 103, No. 3, pp. 332-254, 2015.

17. Trimberger, Stephen M, "Three Ages of FPGAs: A Retrospective on the First Thirty
Years of FPGA Technology," Proceedings of the IEEE, Vol. 103, No. 3, pp. 318-331,
2015.

Approved for Public Release; Distribution Unlimited.
40

18. Cassidy, Andrew S., and Andreas G. Andreou, "Beyond Amdahl's Law: An Objective
Function that Links Multiprocessor Performance Gains to Delay and Ener-
gy." Computers, IEEE Transactions on, Vol. 6, No. 8, pp. 1110-1126, 2012.

19. Yang, Jisoo, Dave B. Minturn, and Frank Hady, "When Poll is Better than Inter-
rupt," FAST, Vol. 12, pp. 3, 2012.

20. Scalera, Stephen M, and Jose R Vazquez, "The Design and Implementation of a Context
Switching FPGA," FPGAs for Custom Computing Machines, Proceedings of the IEEE
Symposium on, pp. 78-85, 1998.

21. Angelini, Chris, and Igor Wallossek, “Power Consumption - AMD Radeon HD 7970
GHz Edition Review,” http://www.tomshardware.com/reviews/radeon-hd-7970-ghz-
edition-review-benchmark,3232-18.html, June 21, 2012, Accessed 10/ 6/ 2015.

22. Shimpi, Anand Lal, “Power Consumption,” January 3 2011,
http://www.anandtech.com/show/4083/the-sandy-bridge-review-intel-core-i7-2600k-i5-
2500k-core-i3-2100-tested/21, Accessed 10/ 5/ 2015.

23. TechPowerUp, “NVIDIA GeForce GTX 750 Ti 2 GB Review | techPowerUp,” February
18 2014,http://www.techpowerup.com/reviews/NVIDIA/GeForce_GTX_750_Ti/23.html,
Accessed 10/ 15/ 2015.

24. Altera. n.d., “PowerPlay Early Power Estimators (EPE) and Power Analyzer,”
https://www.altera.com/support/support-resources/operation-and-testing/power/pow-
powerplay.tablet.html, Accessed 10/ 2015.

25. Xilinx. n.d., “ Xilinx Power Estimator,”
http://www.xilinx.com/products/technology/power/xpe.html, Accessed 10/ 2015.

26. Filipp, Akopyan, Jun Sawada, Andrew Cassidy, Rodrigo Alvarez-Icaza, John Arthur,
Paul Merolla, Nabil Imam, Yutaka Nakamura, Pallab Datta, and Gi-Joon Nam,
"TrueNorth: Design and Tool Flow of a 65mW 1 Million Neuron Programmable
Neurosynaptic Chip," Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on, pp. 1537-1557, 2015.

27. IBM. n.d., “IBM Research: Neurosynaptic Chips,” http://research.ibm.com/cognitive-
computing/neurosynaptic-chips.shtml#fbid=YIqItNwpzlt, Accessed 10/ 9/ 2015.

http://www.tomshardware.com/reviews/radeon-hd-7970-ghz-edition-review-benchmark,3232-18.html
http://www.tomshardware.com/reviews/radeon-hd-7970-ghz-edition-review-benchmark,3232-18.html
http://www.anandtech.com/show/4083/the-sandy-bridge-review-intel-core-i7-2600k-i5-2500k-core-i3-2100-tested/21
http://www.anandtech.com/show/4083/the-sandy-bridge-review-intel-core-i7-2600k-i5-2500k-core-i3-2100-tested/21
http://www.techpowerup.com/reviews/NVIDIA/GeForce_GTX_750_Ti/23.html
https://www.altera.com/support/support-resources/operation-and-testing/power/pow-powerplay.tablet.html
https://www.altera.com/support/support-resources/operation-and-testing/power/pow-powerplay.tablet.html
http://www.xilinx.com/products/technology/power/xpe.html
http://research.ibm.com/cognitive-computing/neurosynaptic-chips.shtml#fbid=YIqItNwpzlt
http://research.ibm.com/cognitive-computing/neurosynaptic-chips.shtml#fbid=YIqItNwpzlt

Approved for Public Release; Distribution Unlimited.
41

LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS

Acronyms Description
ALFUS Autonomy Levels For Unmanned Systems
ARL Army Research Laboratory
ASIC Application Specific Integrated Circuit
CISC Complex Instruction Set Computing
CGRA Coarse Grained Reconfigurable Architectures
COTS Commercial Off The Shelf
CPU Central Processing Unit
CSCPA Context Switching Cognitive Processing Architecture
DHS Department of Homeland Security
DoF Degrees of Freedom
DSP Digital Signal Processors
FPGA Field Programmable Gate Array
GPP General Purpose Processor
GPU Graphical Processing Unit
NIST National Institute of Standards and Technology
RISC Reduced Instruction Set Computing
RT Real Time
RTR Run-Time Reconfiguration
SWAP-C Size, Weight and Power, and Cost
TDP Thermal Design Power
UAV Unmanned Air Vehicle
UMS Unmanned System
VC Vapnik-Chervonenkis
VLIW Very Long Instruction Word

	List of Figures
	1.0 Summary
	2.0 Introduction
	3.0 Methods, Assumptions, and Procedures
	3.1 Taxonomy and Metrics for Autonomy
	3.1.1 Background.
	3.1.2 State-space Formulation of Complexity.
	3.1.2.1 Structural Complexity.
	3.1.2.1 Functional Complexity.
	3.1.2.1 Dynamical Complexity.

	3.1.3 Complexity of Autonomy.
	3.1.3.1 Task Complexity.
	3.1.3.2 System Complexity.
	3.1.3.3 Specialists, Generalists, and Autonomy.
	3.1.3.3 Behavioral approaches to regulation of computational load and optimization of system resources.

	3.2 Resource Analysis of Cognitive Reconfigurable Computing
	3.2.1 Background.
	3.2.2 Context Switching Cognitive Processing Architectures.
	3.2.3 Analysis of CSCPA Performance.
	3.2.3.1 Example Scenario.
	3.2.3.2 Problem Breakdown.
	3.2.2.3 Estimating Power Consumption.
	3.2.2.4 Analysis.
	3.2.2.5 Potential Realizations of the CSCPA.

	4.0 Results and Discussion
	5.0 Conclusion
	6.0 References
	LIST of Symbols, Abbreviations, and Acronyms

